Table 2 Key parameters of the simulation environment for training and testing the delay shift agent.

From: Decentralized queue control with delay shifting in edge-IoT using reinforcement learning

Parameter

Value

Number of IoT devices

1250 (50 per each of the 25 edge nodes)

Task arrival rate

10–20 tasks per minute (Poisson distribution with ±10% fluctuations)

Number of edge nodes

25

Node CPU frequency

2–3 GHz

Node RAM

up to 8 GB

Node power consumption

up to 30 W, 180 Wh (power budget)

Fog latency

250 ms

Network topology

BA graph (attachment parameter m = 2)

Channel bandwidth

1–20 Mbps

Channel latency

10–150 ms

Simulation step/episode duration

1 s/200 steps

Random number generator

fixed seed (seed = 42)

Input datasets

Orange D4D, Intel Lab Sensor Data

Programming language

Python 3.10

Libraries used

TensorFlow 2.11, NumPy 1.24

Hardware platform

AMD Ryzen 7 5800X, 64 GB RAM