Table 6 P-values from dunn’s post hoc analysis with bonferroni correction for comparing delay shift with other approaches.

From: Decentralized queue control with delay shifting in edge-IoT using reinforcement learning

Metric/Dataset

DRL

SEE-MTS

Delay-aware

Smart queue

Mean RT/D4D

0.004

0.009

<0.001

<0.001

Mean RT/Intel

0.006

0.003

<0.001

<0.001

Mean RT/Edge

0.005

0.012

<0.001

<0.001

Deadline/D4D

0.001

0.006

<0.001

<0.001

Deadline/Intel

0.004

0.008

0.001

<0.001

Deadline/Edge

0.007

0.010

<0.001

<0.001

Latency Std/D4D

0.008

0.009

<0.001

<0.001

Latency Std/Intel

0.005

0.004

<0.001

<0.001

Latency Std/Edge

0.006

0.011

<0.001

<0.001

Recovery/D4D

0.002

0.006

<0.001

<0.001

Recovery/Intel

0.003

0.008

<0.001

<0.001

Recovery/Edge

0.004

0.009

<0.001

<0.001