Table 1 The table below summarizes recent studies on MS lesion segmentation using CNNs.
Authors | Datasets | Methods | Limitations | Results |
|---|---|---|---|---|
Brown RA et al17 | Own dataset | FCNN | Agreement with manual segmentation | Dice score: 0.74 (Jacard index) |
Coronado I et al18 | Own dataset | 3D CNN | High false-positive rate in small lesions | Dice score: 0.77 |
Essa E et al19 | MICCAI 2008 MS challenge dataset | Region-based Convolutional Neural Network (R-CNN) | Need for large annotated datasets | Dice score: 0.83 |
Birenbaum A et al20 | 2015 Longitudinal MS Lesion Segmentation Challenge | Single View CNN (V-Net) and Longitudinal Network (L-Net) | Performance compared to trained human raters | Dice score: 0.627 |
Aslani S et al21 | ISBI 2015, Private dataset | Deep end-to-end 2D CNN | Requires validation on larger datasets | Dice score: 0.6114 (ISBI), 0.6655 (Private) |
Nichyporuk et al22. (2022) | Clinical trials datasets | Trial-conditioned CIN, naive pooling, single-trial baselines | Handling biases in the label generation process | Dice scores: 0.795, |
Wiltgen et al23 | In-house dataset, MSSEG, ISBI 2015, MICCAI 2008 | Ensemble of three 3D UNets | Requires large dataset for training, limited generalizability to unseen data | Dice score: 0.67 |
Gabr et al24 | CombiRx clinical trial dataset | FCNN | Variations in class sizes, reliance on multimodal MRI data | Dice scores: 0.95 (WM), 0.96 (GM), 0.99 (CSF), 0.82 (T2 lesions) |
Duong et al25 | Hospital of the University of Pennsylvania | 3D U-Net CNN | Variability in lesion characteristics and acquisition parameters | Dice score: 0.789, |
Afzal et al26 | ISBI, MICCAI datasets | Cascaded 2D CNNs | Overlapping lesions, lesions near cortex | Dice scores: ISBI: 0.67, MICCAI: 0.72 |
de Oliveira et al27 | ISBI 2015, In-house dataset | FCNN | Limited test group size, need for larger validation | – |