Table 5 Performance comparison of different methods on the DS2 Dataset from75. We obtained information on 585 drugs for protein sequences, and on 504 drugs for protein structure. Results in The first five rows are taken from75.

From: PS3N: leveraging protein sequence-structure similarity for novel drug-drug interaction discovery

Method

AUC

AUC-PR

F-measure

Recall

Precision

Substructure-based label propagation model43

0.788

0.208

0.294

0.537

0.197

Vilar’s substructure-based model5

0.810

0.244

0.312

0.479

0.232

Classifier ensemble method78

0.936

0.487

0.553

0.689

0.462

Weighted average ensemble method78

0.646

0.440

0.15

0.226

0.118

NDD75

0.994

0.890

0.825

0.804

0.847

BioDKG-DDI79

0.967

N/A

0.903

0.918

0.884

DPDDI80

0.956

N/A

0.840

0.810

0.754

PS3N (Protein Sequence) (ours)

0.998

0.975

0.978

0.987

0.972

PS3N (Protein Structure) (ours)

0.997

0.975

0.978

0.992

0.964

PS3N (Sequence + Structure) (ours)

0.997

0.970

0.977

0.987

0.970

  1. Bold values indicate the best performance for each metric.