Table 3 A layer-by-layer comprehensive outline of the maizenet model.

From: Enhanced residual-attention deep neural network for disease classification in maize leaf images

Layer Name

Model Layer

Filter Size

Strides

Output Dimension

Layerwise-Parameters

Input_1

Input

-

-

224 × 224 × 3

0

Cblr_1

Conv2D_BNz_LeakyRelu

3 × 3

1

224 × 224 × 16

432 + 64 + 0

Cblr_2

Conv2D _BNz_LeakyRelu

3 × 3

1

224 × 224 × 32

4640 + 128 + 0

gap_1

GAP-2D

-

-

32

0

reshape

Reshape

-

-

1 × 1 × 32

0

dense

Dense

-

-

1 × 1 × 2

64

dense_1

Dense

-

-

1 × 1 × 32

64

conv2d_1

Conv2D

1 × 1

1

224 × 224 × 1

32

multiply

Multiply

-

-

224 × 224 × 32

0

multiply_1

Multiply

-

-

224 × 224 × 32

0

add_1

Add

-

-

224 × 224 × 32

0

Blrc_1

BNz_LeakyRelu_Conv2D

3 × 3

2

112 × 112 × 32

128 + 0 + 9248

Blrc_2

BNz_LeakyRelu_Conv2D

3 × 3

1

112 × 112 × 32

128 + 0 + 1056

conv2d_2

Conv2D

1 × 1

1

112 × 112 × 32

9248

add_2

Add

-

-

112 × 112 × 32

0

Cblr_3

Conv2D _BNz_LeakyRelu

3 × 3

1

112 × 112 × 64

18,496 + 256 + 0

gap_2

GAP-2D

-

-

64

0

Reshape_1

Reshape

-

-

1 × 1 × 64

0

dense_2

Dense

-

-

1 × 1 × 4

256

dense_3

Dense

-

-

1 × 1 × 64

256

conv2d_3

Conv2D

1 × 1

 

112 × 112 × 1

64

multiply_2

Multiply

-

1

112 × 112 × 64

0

multiply_3

Multiply

-

1

112 × 112 × 64

0

add_3

Add

-

-

112 × 112 × 64

0

Blrc_3

BNz_LeakyRelu_Conv2D

3 × 3

2

56 × 56 × 64

256 + 0 + 36,928

Blrc_4

BNz_LeakyRelu_Conv2D

3 × 3

1

56 × 56 × 64

256 + 0 + 4160

conv2d_4

Conv2D

1 × 1

1

56 × 56 × 64

36,928

add_4

Add

-

-

56 × 56 × 64

0

Cblr_4

Conv2D _BNz_LeakyRelu

3 × 3

1

56 × 56 × 128

73,856 + 512 + 0

gap_3

GAP-2D

-

-

128

0

reshape

Reshape

-

-

1 × 1 × 128

0

dense_4

Dense

-

-

1 × 1 × 8

1024

dense_5

Dense

-

-

1 × 1 × 128

1024

conv2d_5

Conv2D

1 × 1

1

56 × 56 × 1

128

multiply_4

Multiply

-

-

56 × 56 × 128

0

multiply_5

Multiply

-

-

56 × 56 × 128

0

add_5

Add

-

-

56 × 56 × 128

0

Blrc_5

BNz_LeakyRelu_Conv2D

3 × 3

2

28 × 28 × 128

512 + 0 + 147,584

Blrc_6

BN_LeakyRelu_Conv2D

3 × 3

1

28 × 28 × 128

512 + 0 + 16,512

conv2d_6

Conv2D

1 × 1

1

28 × 28 × 128

147,584

add_6

Add

-

-

28 × 28 × 128

0

Cblr_5

Conv2D _BNz_LeakyRelu

3 × 3

1

28 × 28 × 256

295,168 + 1024 + 0

gap_4

GAP-2D

-

-

256

0

reshape

Reshape

-

-

1 × 1 × 256

0

dense_6

Dense

-

-

1 × 1 × 16

4096

dense_7

Dense

-

-

1 × 1 × 64

4096

conv2d_7

Conv2D

1 × 1

1

28 × 28 × 1

256

multiply_6

Multiply

-

-

28 × 28 × 256

0

multiply_7

Multiply

-

-

28 × 28 × 256

0

add_7

Add

-

-

28 × 28 × 256

0

Blrc_7

BNz_LeakyRelu_Conv2D

3 × 3

2

14 × 14 × 256

1024 + 0 + 590,080

Blrc_8

BNz_LeakyRelu_Conv2D

3 × 3

1

14 × 14 × 256

1024 + 0 + 65,792

conv2d_8

Conv2D

1 × 1

1

14 × 14 × 256

590,080

add_8

Add

-

1

14 × 14 × 256

0

gap_5

GAP-2D

-

-

256

0

dense_8

Dense

-

-

128

32,896

dropout_1

Dropout

-

-

128

0

dense_9

Dense

-

-

64

8256

dropout_2

Dropout

-

-

64

0

dense_10

Dense

-

-

4

260

Total parameters

21,06,388

Trainable parameters

21,03,476

Non-trainable parameters

2,912