Table 9 Runtime vs. performance trade-off across configurations.

From: An enhancement of machine learning model performance in disease prediction with synthetic data generation

Configuration

AUC

F1-score

Training time (approx.)

p-value

Remarks

Deep-CTGAN + ResNet + TabNet(proposed)

0.85

0.81

~ 42 min (50 epochs)

0.005

Best performance, higher compute cost

Deep-CTGAN + TabNet

0.82

0.79

~ 32 min

0.009

Lower cost, slight drop in accuracy

SMOTE + TabNet

0.79

0.76

< 10 min

0.015

Lightweight, moderate gain

ADASYN + TabNet

0.78

0.75

< 10 min

0.020

Similar to SMOTE