Table 17 The restricted intersection \((\zeta _1,\xi _1,\rho _1,4)\)\(\check{\cap }_{r}\)\((\zeta _2,\xi _2,\rho _2,5)\)\(=\)\((\zeta _6,\xi _6,{\rho }_1\cap {\rho }_2,5)\) in Example 3.7
\((\zeta _6,\xi _6,{\rho }_1\cap {\rho }_2,5)\) | \(\varepsilon _1\) | \(\varepsilon _2\) |
|---|---|---|
\(\ell _1\) | \(\begin{array}{l} \langle 0, 0.2, 0.4 \rangle \\ \langle 3, 0.8, 0.3 \rangle \end{array}\) | \(\begin{array}{l} \langle 2, 0.6, 0.4 \rangle \\ \langle 2, 0.3, 0.5 \rangle \end{array}\) |
\(\ell _2\) | \(\begin{array}{l} \langle 1, 0.2, 0.5 \rangle \\ \langle 2, 0.4, 0.2 \rangle \end{array}\) | \(\begin{array}{l} \langle 1, 0.2, 0.9 \rangle \\ \langle 1, 0.2, 0.2 \rangle \end{array}\) |
\(\ell _3\) | \(\begin{array}{l} \langle 1, 0.2, 0.4 \rangle \\ \langle 0, 0.3, 0.3 \rangle \end{array}\) | \(\begin{array}{l} \langle 1, 0.1, 0.6 \rangle \\ \langle 2, 0.7, 0.1 \rangle \end{array}\) |