Table 4 Tabular form of \((\xi , \lnot \rho , N)\)

From: Pythagorean fuzzy N-bipolar soft sets-based multi-criteria decision-making framework for sustainability evaluation and risk assessment in manufacturing industries

\((\xi , \lnot \rho , N)\)

\(\lnot \varepsilon _1\)

\(\lnot \varepsilon _2\)

\(\cdots\)

\(\lnot \varepsilon _n\)

\(\ell _1\)

\(\langle {r_{11}}_{\lnot \varepsilon _1}, \xi ^{+}_{11}, \xi ^{-}_{11} \rangle\)

\(\langle {r_{12}}_{\lnot \varepsilon _2}, \xi ^{+}_{12}, \xi ^{-}_{12} \rangle\)

\(\cdots\)

\(\langle {r_{1n}}_{\lnot \varepsilon _n}, \xi ^{+}_{1n}, \xi ^{-}_{1n} \rangle\)

\(\ell _2\)

\(\langle {r_{21}}_{\lnot \varepsilon _1}, \xi ^{+}_{21}, \xi ^{-}_{21} \rangle\)

\(\langle {r_{22}}_{\lnot \varepsilon _2}, \xi ^{+}_{22}, \xi ^{-}_{22} \rangle\)

\(\cdots\)

\(\langle {r_{2n}}_{\lnot \varepsilon _n}, \xi ^{+}_{2n}, \xi ^{-}_{2n} \rangle\)

\(\vdots\)

\(\vdots\)

\(\vdots\)

\(\ddots\)

\(\vdots\)

\(\ell _m\)

\(\langle {r_{m1}}_{\lnot \varepsilon _1}, \xi ^{+}_{m1}, \xi ^{-}_{m1} \rangle\)

\(\langle {r_{m2}}_{\lnot \varepsilon _2}, \xi ^{+}_{m2}, \xi ^{-}_{m2} \rangle\)

\(\cdots\)

\(\langle {r_{mn}}_{\lnot \varepsilon _n}, \xi ^{+}_{mn}, \xi ^{-}_{mn} \rangle\)