Table 50 Ablation study.

From: A hybrid deep learning model for detection and mitigation of DDoS attacks in VANETs

Model Variant

Accuracy

Precision

Recall

F1-Score

FPR

FNR

MCC

ROC-AUC

Full Model (CNN + BiLSTM + Attention + Res/Dense)

0.9918

0.9915

0.9915

0.9915

0.0077

0.0085

0.9917

0.9983

w/o CNN (only LSTM + Attention)

0.9587

0.9573

0.9569

0.9571

0.0301

0.0431

0.9424

0.9762

w/o BiLSTM (CNN + Attention)

0.9619

0.9605

0.9582

0.9593

0.0293

0.0418

0.9445

0.9784

w/o Attention Module (CNN + LSTM only)

0.9601

0.9582

0.9566

0.9574

0.0305

0.0434

0.9429

0.9771

w/o Residual/Dense Connections

0.9633

0.9612

0.9601

0.9606

0.0287

0.0399

0.9481

0.9796

Basic CNN + LSTM (no Attention or Res/Dense)

0.9495

0.9472

0.9443

0.9457

0.0351

0.0557

0.931

0.9687