Table 4 Performance of 10 ML algorithms in the training and validation cohorts for early diagnosis of BC.
From: Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153
| Â | Name | Optimal threshold | Accuracy | Positive Precision | Negative Precision | Positive Recall | Negative Recall | F1 score | kappa | AUC | AUC 95% CI |
|---|---|---|---|---|---|---|---|---|---|---|---|
train | AdaBoost | 0.49845 | 0.980769 | 0.972222 | 0.988095 | 0.985915493 | 0.976470588 | 0.98078 | 0.961271 | 0.999171 | 0.9968582964289002-1.0 |
train | ANN | 0.517937 | 0.794872 | 0.867925 | 0.757282 | 0.647887324 | 0.917647059 | 0.789803 | 0.577594 | 0.812593 | 0.7392675981258746–0.8760783996022822 |
train | DT | 0.5 | 0.788462 | 0.88 | 0.745283 | 0.61971831 | 0.929411765 | 0.781734 | 0.56284 | 0.788152 | 0.7245831383806066–0.8474177767426827 |
train | GBDT | 0.464509 | 0.99359 | 1 | 0.988372 | 0.985915493 | 1 | 0.993586 | 0.98706 | 1 | 0.9999999999999999-1.0 |
train | KNN | 0.5 | 0.769231 | 0.857143 | 0.728972 | 0.591549296 | 0.917647059 | 0.761298 | 0.52253 | 0.834963 | 0.768916320895988–0.8909322273028321 |
train | LGBM | 0.400531 | 0.839744 | 0.838235 | 0.840909 | 0.802816901 | 0.870588235 | 0.839404 | 0.675757 | 0.91251 | 0.863754546957672–0.9525539685923516 |
train | LR | 0.510033 | 0.75641 | 0.770492 | 0.747368 | 0.661971831 | 0.835294118 | 0.75395 | 0.503101 | 0.799171 | 0.7230585237547262–0.8629722618044392 |
train | RF | 0.394845 | 0.814103 | 0.783784 | 0.841463 | 0.816901408 | 0.811764706 | 0.814356 | 0.626486 | 0.893538 | 0.8455313358116229–0.9405541361030084 |
train | SVM | 0.5 | 0.769231 | 0.818182 | 0.742574 | 0.633802817 | 0.882352941 | 0.764504 | 0.525916 | 0.806628 | 0.7299192040598291–0.8709271904608475 |
train | XGBoost | 0.68755 | 0.99359 | 1 | 0.988372 | 0.985915493 | 1 | 0.993586 | 0.98706 | 1 | 0.9999999999999999-1.0 |
Validation | AdaBoost | 0.494679 | 0.691176 | 0.625 | 0.785714 | 0.806451613 | 0.594594595 | 0.68937 | 0.391823 | 0.737576 | 0.6026757097069598–0.8455445075757576 |
Validation | ANN | 0.42376 | 0.75 | 0.769231 | 0.738095 | 0.64516129 | 0.837837838 | 0.746946 | 0.489399 | 0.759372 | 0.6181468229002831–0.8791060102688009 |
Validation | DT | 0.883721 | 0.544118 | 0 | 0.544118 | 0 | 1 | 0.383473 | 0 | 0.686138 | 0.5806740723045071–0.7938135915958496 |
Validation | GBDT | 0.710062 | 0.764706 | 0.857143 | 0.723404 | 0.580645161 | 0.918918919 | 0.756087 | 0.512981 | 0.841325 | 0.7338505747126437–0.9260123026252057 |
Validation | KNN | 0.6 | 0.691176 | 0.8125 | 0.653846 | 0.419354839 | 0.918918919 | 0.667921 | 0.352087 | 0.771578 | 0.6635252157119272–0.8704733896072797 |
Validation | LGBM | 0.386878 | 0.823529 | 0.827586 | 0.820513 | 0.774193548 | 0.864864865 | 0.82291 | 0.642419 | 0.839146 | 0.7289324325847764–0.9324775529614239 |
Validation | LR | 0.519913 | 0.764706 | 0.826087 | 0.733333 | 0.612903226 | 0.891891892 | 0.758754 | 0.515583 | 0.804708 | 0.6856231279418057–0.905282741738066 |
Validation | RF | 0.486437 | 0.794118 | 0.84 | 0.767442 | 0.677419355 | 0.891891892 | 0.790809 | 0.578388 | 0.841761 | 0.7331673385100805–0.9250475778546713 |
Validation | SVM | 0.289992 | 0.735294 | 0.666667 | 0.827586 | 0.838709677 | 0.648648649 | 0.734377 | 0.47737 | 0.809939 | 0.6940746753246754–0.908764714600271 |
Validation | XGBoost | 0.472235 | 0.794118 | 0.774194 | 0.810811 | 0.774193548 | 0.810810811 | 0.794118 | 0.585004 | 0.842197 | 0.7381517033690946–0.9308225108225108 |