Table 6 Performance comparison of feature representation methods using their respective optimized CNN architectures for Khib site prediction in the T. gondii dataset. Boldface values indicate the best performance for each metric.

From: A deep learning framework for lysine 2-hydroxyisobutyrylation site prediction using evolutionary feature representation

Feature representation method

10-fold cross-validation set

Independent test set

ACC

F1

MCC

AUC

ACC

F1

MCC

AUC

ESM

0.711

0.713

0.423

0.788

0.711

0.727

0.429

0.800

One hot

0.695

0.694

0.392

0.769

0.705

0.699

0.409

0.778

CTD

0.712

0.734

0.430

0.782

0.720

0.727

0.442

0.778

PSSM

0.731

0.733

0.462

0.810

0.747

0.738

0.493

0.820

AAP

0.800

0.804

0.601

0.881

0.800

0.793

0.600

0.881

BLOSUM

0.815

0.822

0.634

0.896

0.804

0.800

0.609

0.893