Table 1 Types of metaheuristic algorithms.
Natural phenomenon | Biological processes or swarm intelligence |
|---|---|
1. Simulated annealing (SA)18 | 1. Genetic algorithm (GA)19 |
2. Tabu search (TS)20 | 2. Particle swarm optimization (PSO)4 |
3. Harmony search (HS)21 | 3. Evolutionary strategy (ES)22 |
4. Covariance matrix adaptation of evolution strategy (CMAES)23 | 4. Evolutionary programming (EP)24 |
5. Big bang-big crunch (BBBC)25 | 5. Ant colony optimization (ACO)26 |
6. Biogeography-based optimization (BBO)27 | 6. Artificial bee colony (ABC)5 |
7. Gravitational search algorithm (GSA)28 | 7. Hunger games search (HGS)29 |
8. Teaching learning-based optimization (TLBO)10 | 8. Mountain gazelle optimizer (MGO)30 |
9. Black hole algorithm (BHA)31 | 9. Differential evolution (DE)6 |
10. Linear successful history-based adaptive de variants (LSHADE)32 | 10. Cuckoo search (CS)7 |
11. Sine cosine algorithm (SCA)33 | 11. Genetic programming (GP)34 |
12. Multi-verse optimizer (MVO)35 | 12. Grey wolf optimizer (GWO)8 |
13. Farmland fertility algorithm (FFA)11 | 13. Moth-flame optimization (MFO)36 |
14. Equilibrium optimizer (EO)37 | 14. Ant lion optimizer (ALO)38 |
15. Young double-slit experiment optimizer(YDSE)39 | 15. Whale optimization algorithm (WOA)9, |
16. Cosine swarm algorithm (CSA)40 | 16. Salp swarm algorithm (SSA)12 |
| Â | 17. Aquila optimizer (AO)41 |
| Â | 18. African vulture optimization (AVO)16, |
| Â | 19.Modified whale optimization algorithm (MWOA)42, |
| Â | 20. White shark optimizer (WSO)43 |
| Â | 21. American zebra optimization algorithm (AZOA)44 |