Table 1 Types of metaheuristic algorithms.

From: An enhanced opposition-based African vulture optimizer for solving engineering design problems and global optimization

Natural phenomenon

Biological processes or swarm intelligence

1. Simulated annealing (SA)18

1. Genetic algorithm (GA)19

2. Tabu search (TS)20

2. Particle swarm optimization (PSO)4

3. Harmony search (HS)21

3. Evolutionary strategy (ES)22

4. Covariance matrix adaptation of evolution strategy (CMAES)23

4. Evolutionary programming (EP)24

5. Big bang-big crunch (BBBC)25

5. Ant colony optimization (ACO)26

6. Biogeography-based optimization (BBO)27

6. Artificial bee colony (ABC)5

7. Gravitational search algorithm (GSA)28

7. Hunger games search (HGS)29

8. Teaching learning-based optimization (TLBO)10

8. Mountain gazelle optimizer (MGO)30

9. Black hole algorithm (BHA)31

9. Differential evolution (DE)6

10. Linear successful history-based adaptive de variants (LSHADE)32

10. Cuckoo search (CS)7

11. Sine cosine algorithm (SCA)33

11. Genetic programming (GP)34

12. Multi-verse optimizer (MVO)35

12. Grey wolf optimizer (GWO)8

13. Farmland fertility algorithm (FFA)11

13. Moth-flame optimization (MFO)36

14. Equilibrium optimizer (EO)37

14. Ant lion optimizer (ALO)38

15. Young double-slit experiment optimizer(YDSE)39

15. Whale optimization algorithm (WOA)9,

16. Cosine swarm algorithm (CSA)40

16. Salp swarm algorithm (SSA)12

 

17. Aquila optimizer (AO)41

 

18. African vulture optimization (AVO)16,

 

19.Modified whale optimization algorithm (MWOA)42,

 

20. White shark optimizer (WSO)43

 

21. American zebra optimization algorithm (AZOA)44