Table 2 Comparison of different machine learning models on the performance in estimation OV infectious level grading. The best performance and the next best performance are indicated in bold and italic respectively. \(\circ\) represents a classification model and \(\triangle\) represents a regression model. The proposed models that outperform the most performant baseline, ResNet50 \(\triangle\) (\(p <0.05\)) are marked with \(*\).

From: AI-enhanced rapid diagnostic testing platform for mass opisthorchiasis screening

Task

Models

Performance (± s.d)

Accuracy

Recall

Precision

F1-score

OV-RDT grading

(0, +1, +2, +3, +4)

SVM \(\circ\)

0.48 ± 0.07

0.48 ± 0.07

0.50 ± 0.06

0.48 ± 0.07

RF \(\circ\)

0.44 ± 0.06

0.44 ± 0.06

0.46 ± 0.07

0.44 ± 0.06

MobileNetV2 \(\circ\)

0.48 ± 0.05

0.48 ± 0.05

0.49 ± 0.06

0.46 ± 0.05

MobileNetV2 \(\triangle\)

0.55 ± 0.06

0.55 ± 0.06

0.59 ± 0.06

0.55 ± 0.06

ResNet50 \(\circ\)

0.58 ± 0.07

0.58 ± 0.07

0.57 ± 0.09

0.57 ± 0.07

ResNet50 \(\triangle\)

0.58 ± 0.07

0.58 ± 0.07

0.61 ± 0.08

0.58 ± 0.07

EffNet-B5 \(\circ\) (Ours)

0.63 ± 0.06

0.63 ± 0.06

0.64 ± 0.06

0.62 ± 0.06

EffNet-B5 \(\triangle\) (Ours)

0.66\(\pm {\textbf {0.06}}^*\)

0.66\(\pm {\textbf {0.06}}^*\)

0.68\(\pm {\textbf {0.06}}^{*}\)

0.66\(\pm {\textbf {0.06}}^{*}\)

OV-RDT Status

(Negative (0), Positive (1–4))

SVM \(\circ\)

0.84 ± 0.04

0.84 ± 0.04

0.87 ± 0.04

0.85 ± 0.04

RF \(\circ\)

0.78 ± 0.04

0.78 ± 0.04

0.81 ± 0.04

0.79 ± 0.04

MobileNetV2 \(\circ\)

0.87 ± 0.04

0.87 ± 0.04

0.91 ± 0.03

0.88 ± 0.04

MobileNetV2 \(\triangle\)

0.91 ± 0.04

0.91 ± 0.04

0.92 ± 0.03

0.91 ± 0.03

Resnet50 \(\circ\)

0.90 ± 0.04

0.90 ± 0.04

0.93 ± 0.02

0.90 ± 0.03

ResNet50 \(\triangle\)

0.92 ± 0.03

0.92 ± 0.03

0.93 ± 0.03

0.92 ± 0.03

EffNet-B5 \(\circ\) (Ours)

0.95\(\pm 0.03 ^{*}\)

0.95\(\pm 0.03 ^{*}\)

0.95\(\pm 0.03 ^{*}\)

0.95\(\pm 0.03 ^{*}\)

EffNet-B5 \(\triangle\) (Ours)

0.95\(\pm {\textbf {0.03}}^*\)

0.95\(\pm {\textbf {0.03}}^{*}\)

0.96\(\pm {\textbf {0.03}}^{*}\)

0.95\(\pm {\textbf {0.03}}^{*}\)