Table 9 MSE of memory-type and proposed calibrated ratio estimators based on EWMA statistic at different values of correlation coefficient ρ, smoothing parameters \(\:\lambda\:=0.10,\:0.15,\:0.25,\) and sample sizes \(\:n\).
From: Innovative memory-type calibration estimators for better survey accuracy in stratified sampling
ρ | n | λ = 0.1 | λ = 0.15 | λ = 0.25 | |||
|---|---|---|---|---|---|---|---|
\(\:{{\stackrel{-}{y}}^{M}}_{pt}\) | \(\:{\widehat{y}}_{mp}\) | \(\:{{\stackrel{-}{y}}^{M}}_{pt}\) | \(\:{\widehat{y}}_{mp}\) | \(\:{{\stackrel{-}{y}}^{M}}_{pt}\) | \(\:{\widehat{y}}_{mp}\) | ||
− 0.05 | 10 | 0.005633 | 0.000004 | 0.008491 | 0.000006 | 0.015184 | 0.000001 |
20 | 0.002828 | 0.000002 | 0.004185 | 0.000003 | 0.007482 | 0.000005 | |
30 | 0.001941 | 0.000001 | 0.002812 | 0.000002 | 0.005094 | 0.000004 | |
50 | 0.001107 | 0.000000 | 0.001737 | 0.000001 | 0.003042 | 0.000002 | |
200 | 0.000280 | 0.000000 | 0.000429 | 0.000000 | 0.000758 | 0.000000 | |
500 | 0.000109 | 0.000000 | 0.000176 | 0.000000 | 0.000298 | 0.000000 | |
− 0.25 | 10 | 0.005838 | 0.000004 | 0.009275 | 0.000006 | 0.016431 | 0.000001 |
20 | 0.002982 | 0.000002 | 0.004553 | 0.000003 | 0.008280 | 0.000005 | |
30 | 0.002039 | 0.000002 | 0.003060 | 0.000001 | 0.005386 | 0.000003 | |
50 | 0.001224 | 0.000000 | 0.001868 | 0.000001 | 0.003284 | 0.000002 | |
200 | 0.000304 | 0.000000 | 0.000460 | 0.000000 | 0.000807 | 0.000000 | |
500 | 0.000124 | 0.000000 | 0.000188 | 0.000000 | 0.000325 | 0.000000 | |
− 0.50 | 10 | 0.006472 | 0.000004 | 0.010138 | 0.000005 | 0.017557 | 0.000009 |
20 | 0.003272 | 0.000002 | 0.004992 | 0.000003 | 0.008793 | 0.000005 | |
30 | 0.002140 | 0.000001 | 0.003386 | 0.000002 | 0.005954 | 0.000003 | |
50 | 0.001314 | 0.000000 | 0.002045 | 0.000001 | 0.003556 | 0.000002 | |
200 | 0.000335 | 0.000000 | 0.000505 | 0.000000 | 0.000871 | 0.000000 | |
500 | 0.000129 | 0.000000 | 0.000195 | 0.000000 | 0.000352 | 0.000000 | |
− 0.75 | 10 | 0.007238 | 0.000003 | 0.011025 | 0.000005 | 0.019197 | 0.000009 |
20 | 0.003477 | 0.000002 | 0.005311 | 0.000002 | 0.009607 | 0.000004 | |
30 | 0.002415 | 0.000001 | 0.003726 | 0.000002 | 0.006499 | 0.000003 | |
50 | 0.001380 | 0.000000 | 0.002202 | 0.000001 | 0.003757 | 0.000002 | |
200 | 0.000349 | 0.000000 | 0.000558 | 0.000000 | 0.000932 | 0.000000 | |
500 | 0.000137 | 0.000000 | 0.000223 | 0.000000 | 0.000381 | 0.000000 | |
− 0.95 | 10 | 0.007437 | 0.000003 | 0.011555 | 0.000005 | 0.020780 | 0.000008 |
20 | 0.003791 | 0.000002 | 0.005739 | 0.000002 | 0.009980 | 0.000004 | |
30 | 0.002431 | 0.000001 | 0.003820 | 0.000002 | 0.006730 | 0.000002 | |
50 | 0.001537 | 0.000000 | 0.002288 | 0.000001 | 0.004202 | 0.000002 | |
200 | 0.000381 | 0.000000 | 0.000568 | 0.000000 | 0.000999 | 0.000000 | |
500 | 0.000150 | 0.000000 | 0.000233 | 0.000000 | 0.000399 | 0.000000 | |