Table 5 Comparison of different neural network architectures for real manipulator dynamics learning.
| Â | PHNODEs | SPEL | SPEL-KAN |
|---|---|---|---|
M-NN Outputs | 171 | 20 | 20 |
V-NN Outputs | 1 | 1 | 1 |
D-NN Outputs | 171 | 21 | 21 |
G-NN Outputs | 18 | 6 | 6 |
Parameters | 326,911 | 156,359 | 85,521 |
Activation function | tanh | tanh | learned |
Training loss | \(8.13\times 10^{-3}\) | \(7.99\times 10^{-3}\) | \(\varvec{7.96}\times \varvec{10^{-3}}\) |
Training time(s) | 17.70 | 3.76 | 6.44 |
Test loss | \(9.62\times 10^{-3}\) | \(\varvec{8.77}\times \varvec{10^{-3}}\) | \(9.07\times 10^{-3}\) |