Table 3 Darts-based default hypertunning parameters for DNN models used in this study.

From: Salt rock creep deformation forecasting using deep neural networks and analytical models for subsurface energy storage applications

SN

Model name

Default hypertunning parameters in a darts-based environment

Input variable

Input action

1.

N-BEATS

Number of stacks

30

Generic architecture

True

Number of layers

4

Number of blocks

1

Layer width

256

Expansion coefficients dim

5

Trend polynomial degree

2

Dropout

0.0

Activation function

Relu

Output chunk shift

0

2.

TCN

Output chunk shift

0

Kernal size

3

No of layers

None

Dilation base

2

Weight norm

False

Dropout

0.2

3.

RNN

Output chunk shift

0

Model

“RNN” or “LSTM” or “GRU”

Hidden dim

25

RNN layer

1

Dropout

0.0

Hidden fc sizes

None

Batch size

[32, 64]

4.

Transformer

Output chunk shift

0

Kernal size

3

No of filter

3

No of layer

None

Dilation base

2

Weight norm

False

Dropout

0.2

Random state

0