Table 5 Summary of performance metrics and adjustable training parameters of deep learning models for forecasting the axial strain response creep datasets at various confining stress levels (best highlighted in bold).
Stages (MPa) | DNN forecast models | Epochs | Training loss | Input chunk length | Output chunk length | SMAPE (%) | MAPE (%) | RMSE | MAE |
|---|---|---|---|---|---|---|---|---|---|
5 | N-BEATS | 100 | 0.0454 | 24 | 12 | 1.46 | 1.45 | 0.332 | 0.287 |
TCN | 400 | 2.260 | 24 | 12 | 6.03 | 6.28 | 1.352 | 1.177 | |
RNN | 400 | 0.892 | 24 | 12 | 25.08 | 22.16 | 4.437 | 4.283 | |
TF | 400 | 0.450 | 24 | 12 | 13.04 | 11.09 | 1.856 | 1.21 | |
15 | N-BEATS | 100 | 0.0099 | 24 | 12 | 3.98 | 4.06 | 0.465 | 0.381 |
TCN | 400 | 0.838 | 24 | 12 | 5.46 | 5.49 | 0.645 | 0.535 | |
RNN | 400 | 0.188 | 24 | 12 | 28.12 | 25.68 | 4.491 | 2.39 | |
TF | 400 | 0.327 | 24 | 12 | 25.52 | 23.43 | 3.954 | 2.98 | |
25 | N-BEATS | 100 | 0.0291 | 100 | 20 | 4.62 | 4.54 | 0.957 | 0.961 |
TCN | 400 | 0.575 | 24 | 12 | 2.88 | 2.85 | 0.704 | 0.592 | |
RNN | 400 | 0.872 | 24 | 12 | 12.33 | 10.05 | 1.950 | 1.21 | |
TF | 400 | 0.398 | 24 | 12 | 10.05 | 11.73 | 8.232 | 2.45 | |
35 | N-BEATS | 100 | 0.0277 | 50 | 10 | 4.26 | 4.34 | 0.640 | 0.473 |
TCN | 400 | 0.348 | 24 | 12 | 4.46 | 4.34 | 0.540 | 0.472 | |
RNN | 400 | 0.233 | 24 | 12 | 22.18 | 24.98 | 2.983 | 1.79 | |
TF | 400 | 0.568 | 24 | 12 | 15.08 | 13.06 | 2.221 | 2.13 |