Table 5 Summary of performance metrics and adjustable training parameters of deep learning models for forecasting the axial strain response creep datasets at various confining stress levels (best highlighted in bold).

From: Salt rock creep deformation forecasting using deep neural networks and analytical models for subsurface energy storage applications

Stages (MPa)

DNN forecast models

Epochs

Training loss

Input chunk length

Output chunk length

SMAPE (%)

MAPE (%)

RMSE

MAE

5

N-BEATS

100

0.0454

24

12

1.46

1.45

0.332

0.287

TCN

400

2.260

24

12

6.03

6.28

1.352

1.177

RNN

400

0.892

24

12

25.08

22.16

4.437

4.283

TF

400

0.450

24

12

13.04

11.09

1.856

1.21

15

N-BEATS

100

0.0099

24

12

3.98

4.06

0.465

0.381

TCN

400

0.838

24

12

5.46

5.49

0.645

0.535

RNN

400

0.188

24

12

28.12

25.68

4.491

2.39

TF

400

0.327

24

12

25.52

23.43

3.954

2.98

25

N-BEATS

100

0.0291

100

20

4.62

4.54

0.957

0.961

TCN

400

0.575

24

12

2.88

2.85

0.704

0.592

RNN

400

0.872

24

12

12.33

10.05

1.950

1.21

TF

400

0.398

24

12

10.05

11.73

8.232

2.45

35

N-BEATS

100

0.0277

50

10

4.26

4.34

0.640

0.473

TCN

400

0.348

24

12

4.46

4.34

0.540

0.472

RNN

400

0.233

24

12

22.18

24.98

2.983

1.79

TF

400

0.568

24

12

15.08

13.06

2.221

2.13