Table 7 Performance metrics of the analytical models from training data (best results are highlighted).
Sr. no. | Data (MPa) | Analytical models | R2 | RMSE | MAE | MAPE (%) | SMAPE (%) |
|---|---|---|---|---|---|---|---|
1 | 5 | Power law | 0.98 | 0.33 | 0.28 | 1.45 | 1.46 |
Burger | 0.97 | 0.52 | 0.42 | 3.49 | 3.55 | ||
Kelvin | 0.95 | 0.92 | 0.91 | 6.05 | 5.95 | ||
Spring Dashpot | 0.93 | 0.93 | 0.91 | 6.70 | 6.51 | ||
Logarithmic | 0.92 | 1.01 | 0.97 | 6.91 | 6.72 | ||
2 | 15 | Power law | 0.97 | 0.36 | 0.34 | 2.46 | 2.42 |
Burger | 0.97 | 0.52 | 0.42 | 3.49 | 3.55 | ||
Kelvin | 0.94 | 0.92 | 0.91 | 6.05 | 5.95 | ||
Spring Dashpot | 0.93 | 0.93 | 0.91 | 6.70 | 6.51 | ||
Logarithmic | 0.92 | 1.01 | 0.97 | 6.91 | 6.72 | ||
3 | 25 | Power law | 0.98 | 0.36 | 0.29 | 1.49 | 1.46 |
Burger | 0.96 | 0.52 | 0.42 | 3.49 | 3.55 | ||
Kelvin | 0.95 | 0.92 | 0.91 | 6.05 | 5.95 | ||
Spring Dashpot | 0.92 | 0.93 | 0.91 | 6.70 | 6.51 | ||
Logarithmic | 0.91 | 1.01 | 0.97 | 6.91 | 6.72 | ||
4 | 35 | Power law | 0.97 | 0.42 | 0.38 | 2.53 | 2.48 |
Burger | 0.94 | 0.52 | 0.42 | 3.49 | 3.55 | ||
Kelvin | 0.93 | 0.92 | 0.91 | 6.05 | 5.95 | ||
Spring Dashpot | 0.93 | 0.93 | 0.91 | 6.70 | 6.51 | ||
Logarithmic | 0.90 | 1.01 | 0.97 | 6.91 | 6.72 |