Table 7 The Statistical Values Using Logarithmic Model for Connecting Units of Polyester.
From: Exploring entropy measures in polymer graphs using logarithmic regression model
\(Logarithmic \ Model\) | \(R\) | \(R^2\) | \(S_E\) | \(F\) | \(P-value\) |
|---|---|---|---|---|---|
\(ENT_{M_1}=0.9931ln[M_1]-1.6369\) | 0.9999 | 0.9999 | 0.002 | 1243491.042 | 4.684E-22 |
\(ENT_{M_2}=0.9877ln[M_2]-1.7058\) | 0.9999 | 0.9999 | 0.003 | 445794.7911 | 2.835E-20 |
\(ENT_{ReZG_1}=1.0162ln[ReZG_1]-0.0960\) | 0.9999 | 0.9999 | 0.004 | 299577.556 | 1.390E-19 |
\(ENT_{ReZG_2}=0.9886ln[ReZG_2]-0.1407\) | 0.9999 | 0.9999 | 0.003 | 485590.922 | 2.014E-20 |
\(ENT_{ReZG_3}=0.9900ln[ReZG_3]-3.7565\) | 0.9999 | 0.9999 | 0.002 | 6709494.075 | 5.526E-21 |
\(ENT_{ABC}= 0.2536ln[ABC]+1.0067\) | 0.9999 | 0.9999 | 0.001 | 1344208.171 | 3.430E-22 |
\(ENT_{GA}=0.9975ln[GA]+0.0921\) | 0.9999 | 0.9999 | 0.0007 | 9693762.702 | 1.268E-25 |