Table 6 Comparison between diagnosis models.

From: A new ensemble heart attack diagnosis (EHAD) model using artificial intelligence techniques

Metrics

Recall (%)

Precision(%)

F1-score (%)

Accuracy (%)

Specificity(%)

MCC(%)

ROC-AUC

Time (Sec.)

SVM

84

84

84

82.42

80.49

64.49

88.54

0.02

ANN

84

85.71

84.85

83.52

82.93

66.80

88.63

1.39

LSTM

90

83.33

86.54

84.62

82.93

71.1

89.39

3.29

Gradient Boosting

76

82.61

79.17

78.02

80.49

56.2

87.27

0.10

XGBoost

80

83.33

81.63

80.22

80.44

60.3

87.22

20.84

Random Forest

86

84.31

85.15

83.52

80.39

66.7

89.00

0.19

EHAD

90

86.54

88.24

86.81

85.37

75.5

89.51

4.7