Table 10 Performance assessment of using the support vector machines (SVM) models.

From: Machine learning-based prediction of drug response in ischemia reperfusion animal model

Model

Support vector machines (SVM)

Metric

Complete

(all features)

Reduced model

(SFS)

Molecular

Accuracy

0.9047  0.0340

0.6965  0.0374

 

Precision

0.9907  0.0131

0.8286  0.0563

 

Recall

0.8700  0.0384

0.7046  0.0092

 

Specificity

0.9815  0.0262

0.6833  0.0970

 

MCC

0.8079  0.0690

0.3636  0.0926

Biochemical

Accuracy

0.8540  0.0202

0.8932  0.0084

 

Precision

0.9339  0.0588

0.9508  0.0398

 

Recall

0.8540  0.0495

0.8942  0.0493

 

Specificity

0.8630  0.1238

0.8963  0.0818

 

MCC

0.6924  0.0568

0.7713  0.0012

Molecular-biochemical

Accuracy

0.8708  0.0210

0.8932  0.0084

 

Precision

0.9431  0.0618

0.9508  0.0398

 

Recall

0.8700  0.0384

0.8942  0.0493

 

Specificity

0.8815  0.1303

0.8963  0.0818

 

MCC

0.7263  0.0608

0.7713  0.0012

  1. Results are reported in the (average accuracy variance) format for all the 3-folds used to cross-validate the models. Note that recall is also the sensitivity metric. MCC, Matthews correlation coefficient.