Table 10 Performance assessment of using the support vector machines (SVM) models.
From: Machine learning-based prediction of drug response in ischemia reperfusion animal model
Model | Support vector machines (SVM) | ||
|---|---|---|---|
Metric | Complete (all features) | Reduced model (SFS) | |
Molecular | Accuracy | 0.9047 ∓ 0.0340 | 0.6965 ∓ 0.0374 |
Precision | 0.9907 ∓ 0.0131 | 0.8286 ∓ 0.0563 | |
Recall | 0.8700 ∓ 0.0384 | 0.7046 ∓ 0.0092 | |
Specificity | 0.9815 ∓ 0.0262 | 0.6833 ∓ 0.0970 | |
MCC | 0.8079 ∓ 0.0690 | 0.3636 ∓ 0.0926 | |
Biochemical | Accuracy | 0.8540 ∓ 0.0202 | 0.8932 ∓ 0.0084 |
Precision | 0.9339 ∓ 0.0588 | 0.9508 ∓ 0.0398 | |
Recall | 0.8540 ∓ 0.0495 | 0.8942 ∓ 0.0493 | |
Specificity | 0.8630 ∓ 0.1238 | 0.8963 ∓ 0.0818 | |
MCC | 0.6924 ∓ 0.0568 | 0.7713 ∓ 0.0012 | |
Molecular-biochemical | Accuracy | 0.8708 ∓ 0.0210 | 0.8932 ∓ 0.0084 |
Precision | 0.9431 ∓ 0.0618 | 0.9508 ∓ 0.0398 | |
Recall | 0.8700 ∓ 0.0384 | 0.8942 ∓ 0.0493 | |
Specificity | 0.8815 ∓ 0.1303 | 0.8963 ∓ 0.0818 | |
MCC | 0.7263 ∓ 0.0608 | 0.7713 ∓ 0.0012 | |