Table 8 Performance assessment of using the neural networks (NN) models.
From: Machine learning-based prediction of drug response in ischemia reperfusion animal model
Model | Neural networks (NN) | ||
|---|---|---|---|
Metric | Complete (all features) | Reduced model (SFS) | |
Molecular | Accuracy | 0.8766 ∓ 0.0200 | 0.7702 ∓ 0.0827 |
Precision | 0.9176 ∓ 0.0202 | 0.9273 ∓ 0.0280 | |
Recall | 0.9025 ∓ 0.0503 | 0.7250 ∓ 0.1230 | |
Specificity | 0.8222 ∓ 0.0480 | 0.8759 ∓ 0.0489 | |
MCC | 0.7228 ∓ 0.0311 | 0.5699 ∓ 0.1327 | |
Biochemical | Accuracy | 0.8541 ∓ 0.0274 | 0.9103 ∓ 0.0203 |
Precision | 0.9325 ∓ 0.0478 | 0.9570 ∓ 0.0118 | |
Recall | 0.8538 ∓ 0.0504 | 0.9107 ∓ 0.0283 | |
Specificity | 0.8593 ∓ 0.0999 | 0.9111 ∓ 0.0240 | |
MCC | 0.6887 ∓ 0.0721 | 0.8009 ∓ 0.0455 | |
Molecular-biochemical | Accuracy | 0.8653 ∓ 0.0473 | 0.9103 ∓ 0.0203 |
Precision | 0.9086 ∓ 0.0218 | 0.9570 ∓ 0.0118 | |
Recall | 0.8952 ∓ 0.0588 | 0.9107 ∓ 0.0283 | |
Specificity | 0.8019 ∓ 0.0567 | 0.9111 ∓ 0.0240 | |
MCC | 0.6939 ∓ 0.1095 | 0.8009 ∓ 0.0455 | |