Table 9 Performance assessment of using the random forests (RF) models.
From: Machine learning-based prediction of drug response in ischemia reperfusion animal model
Model | Random forest (RF) | ||
|---|---|---|---|
Metric | Complete (all features) | Reduced model (SFS) | |
Molecular | Accuracy | 0.8765 ∓ 0.0155 | 0.8709 ∓ 0.0148 |
Precision | 0.9402 ∓ 0.0288 | 0.9464 ∓ 0.0209 | |
Recall | 0.8786 ∓ 0.0503 | 0.8709 ∓ 0.0267 | |
Specificity | 0.8778 ∓ 0.0595 | 0.8944 ∓ 0.0388 | |
MCC | 0.7348 ∓ 0.0261 | 0.7244 ∓ 0. 0314 | |
Biochemical | Accuracy | 0.8877 ∓ 0.0210 | 0.8990 ∓ 0.0130 |
Precision | 0.9183 ∓ 0.0300 | 0.9333 ∓ 0.0119 | |
Recall | 0.9182 ∓ 0.0096 | 0.9182 ∓ 0.0096 | |
Specificity | 0.8241 ∓ 0.0571 | 0.8574 ∓ 0.0233 | |
MCC | 0.7410 ∓ 0.0467 | 0.7680 ∓ 0.0315 | |
Molecular-biochemical | Accuracy | 0.8990 ∓ 0.0130 | 0.8990 ∓ 0.0130 |
Precision | 0.9504 ∓ 0.0398 | 0.9333 ∓ 0.0119 | |
Recall | 0.9026 ∓ 0.0327 | 0.9182 ∓ 0.0096 | |
Specificity | 0.8963 ∓ 0.0818 | 0.8574 ∓ 0.0233 | |
MCC | 0.7794 ∓ 0.0371 | 0.7680 ∓ 0.0315 | |