Table 1 Comparison of the proposed model with recent state-of-the-art models.
From: Deep intelligence: a four-stage deep network for accurate brain tumor segmentation
Loss | Dice coefficient | Jaccard similarity | Tversky index | Accuracy | |
|---|---|---|---|---|---|
ARU-GD29 | 0.4069 | 0.9189 | 0.8499 | 0.7018 | 0.9979 |
2D-VNet34 | 0.0069 | 0.9192 | 0.9579 | 0.9930 | 0.9937 |
MultiResUNet35 | 0.2510 | 0.7490 | 0.6004 | 0.7423 | 0.9972 |
3D-UNet36 | 0.2586 | 0.7408 | 0.5900 | 0.7293 | 0.9964 |
2D UNET MODEL39 | 0.0732 | 0.9268 | 0.8803 | 0.9117 | 0.9664 |
LinkNet37 | 0.0062 | 0.9938 | 0.9213 | 0.9590 | 0.9942 |
3D-UNET38 | 0.4737 | 1.0 | 0.250 | 1 | 0.25 |
TransUnet40 | 0.5891 | 0.4515 | 0.2917 | 0.4515 | 0.4515 |
Proposed model (4-stage 2D VNet++) | 0.0061 | 0.9928 | 0.9964 | 0.9974 | 0.9971 |