Table 11 Performance of various models under different epsilons.
From: An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
Neural network model | Evaluation metrics | \({\varvec{\upepsilon}}\)(epsilons) | |||||
|---|---|---|---|---|---|---|---|
original | 1/255 | 2/255 | 3/255 | 4/255 | 5/255 | ||
DNN | Adversarial accuracy | 0.9627 | 0.8893 | 0.4907 | 0.1960 | 0.1133 | 0.0933 |
Attack success rate | 0.0 | 0.0762 | 0.4903 | 0.7964 | 0.8823 | 0.9030 | |
Average L1 distance | 0.0 | 1.1702 | 2.2979 | 3.3012 | 3.8961 | 4.2859 | |
Average L2 distance | 0.0 | 0.0677 | 0.1338 | 0.1937 | 0.2355 | 0.2715 | |
BiLSTM | Adversarial accuracy | 0.9640 | 0.8440 | 0.3987 | 0.1667 | 0.0920 | 0.0693 |
Attack success rate | 0.0 | 0.1245 | 0.5864 | 0.8271 | 0.9046 | 0.9281 | |
Average L1 distance | 0.0 | 1.1719 | 2.3116 | 3.3308 | 3.9296 | 4.3159 | |
Average L2 distance | 0.0 | 0.0678 | 0.1343 | 0.1949 | 0.2369 | 0.2730 | |
CNN-LSTM | Adversarial accuracy | 0.9560 | 0.6160 | 0.1933 | 0.1307 | 0.1067 | 0.1027 |
Attack success rate | 0.0 | 0.3556 | 0.7978 | 0.8633 | 0.8884 | 0.8926 | |
Average L1 distance | 0.0 | 1.1421 | 2.1842 | 3.0447 | 3.6027 | 4.0221 | |
Average L2 distance | 0.0 | 0.0666 | 0.1291 | 0.1832 | 0.2231 | 0.2587 | |
BiLSTM-MultiheadAttention | Adversarial accuracy | 0.9587 | 0.6120 | 0.1760 | 0.0853 | 0.0667 | 0.0613 |
Attack success rate | 0.0 | 0.3616 | 0.8164 | 0.9110 | 0.9305 | 0.9360 | |
Average L1 distance | 0.0 | 1.1703 | 2.2859 | 3.2548 | 3.8348 | 4.2278 | |
Average L2 distance | 0.0 | 0.0677 | 0.1334 | 0.1919 | 0.2330 | 0.2687 | |
CNN-LSTM-ATT | Adversarial accuracy | 0.9307 | 0.4107 | 0.1573 | 0.1040 | 0.0880 | 0.0747 |
Attack success rate | 0.0 | 0.5587 | 0.8309 | 0.8883 | 0.9054 | 0.9198 | |
Average L1 distance | 0.0 | 1.1120 | 2.0774 | 2.8439 | 3.3736 | 3.8137 | |
Average L2 distance | 0.0 | 0.0657 | 0.1248 | 0.1746 | 0.2130 | 0.2483 | |