Table 11 Performance of various models under different epsilons.

From: An incremental adversarial training method enables timeliness and rapid new knowledge acquisition

Neural network model

Evaluation metrics

\({\varvec{\upepsilon}}\)(epsilons)

original

1/255

2/255

3/255

4/255

5/255

DNN

Adversarial accuracy

0.9627

0.8893

0.4907

0.1960

0.1133

0.0933

Attack success rate

0.0

0.0762

0.4903

0.7964

0.8823

0.9030

Average L1 distance

0.0

1.1702

2.2979

3.3012

3.8961

4.2859

Average L2 distance

0.0

0.0677

0.1338

0.1937

0.2355

0.2715

BiLSTM

Adversarial accuracy

0.9640

0.8440

0.3987

0.1667

0.0920

0.0693

Attack success rate

0.0

0.1245

0.5864

0.8271

0.9046

0.9281

Average L1 distance

0.0

1.1719

2.3116

3.3308

3.9296

4.3159

Average L2 distance

0.0

0.0678

0.1343

0.1949

0.2369

0.2730

CNN-LSTM

Adversarial accuracy

0.9560

0.6160

0.1933

0.1307

0.1067

0.1027

Attack success rate

0.0

0.3556

0.7978

0.8633

0.8884

0.8926

Average L1 distance

0.0

1.1421

2.1842

3.0447

3.6027

4.0221

Average L2 distance

0.0

0.0666

0.1291

0.1832

0.2231

0.2587

BiLSTM-MultiheadAttention

Adversarial accuracy

0.9587

0.6120

0.1760

0.0853

0.0667

0.0613

Attack success rate

0.0

0.3616

0.8164

0.9110

0.9305

0.9360

Average L1 distance

0.0

1.1703

2.2859

3.2548

3.8348

4.2278

Average L2 distance

0.0

0.0677

0.1334

0.1919

0.2330

0.2687

CNN-LSTM-ATT

Adversarial accuracy

0.9307

0.4107

0.1573

0.1040

0.0880

0.0747

Attack success rate

0.0

0.5587

0.8309

0.8883

0.9054

0.9198

Average L1 distance

0.0

1.1120

2.0774

2.8439

3.3736

3.8137

Average L2 distance

0.0

0.0657

0.1248

0.1746

0.2130

0.2483