Table 15 Model performance with different \(\uplambda\) parameters.

From: An incremental adversarial training method enables timeliness and rapid new knowledge acquisition

 

\(\uplambda\) = 1e−5

\(\uplambda\) = 0.01

\(\uplambda\) = 0.1

\(\uplambda\) = 0.2

\(\uplambda\) = 0.5

Accuracy

0.9933

0.9893

0.9880

0.9920

0.9867

Precision

0.9931

0.9890

0.9878

0.9917

0.9862

Recall

0.9935

0.9894

0.9880

0.9923

0.9872

F1-score

0.9933

0.9892

0.9878

0.9919

0.9865

Robust-accuracy

0.9533

0.9480

0.9373

0.9440

0.9387