Table 10 AUC for heart disease dataset.

From: Using item response theory as a methodology to impute categorical missing values

Type

Missing (%)

KNN

MICE\(^1\) ± Std. err.

Datawig\(^1\) ± Std. err.

IRT

MAR

2389

0.832

0.831 ± 0.0001

0.831 ± 0.0001

0.830

MAR

4779

0.830

0.830 ± 0.0002

0.831 ± 0.0002

0.832

MAR

14,336

0.827

0.828 ± 0.0001

0.829 ± 0.0003

0.827

MAR

23,893

0.827

0.827 ± 0.0003

0.828 ± 0.0002

0.829

Marginal means

0.829

0.829

0.830

0.829

MCAR

2389

0.829

0.831 ± 0.0003

0.832 ± 0.0004

0.832

MCAR

4779

0.831

0.830 ± 0.0005

0.831 ± 0.0002

0.831

MCAR

14,336

0.829

0.828 ± 0.0005

0.829 ± 0.0002

0.828

MCAR

23,893

0.828

0.826 ± 0.0003

0.828 ± 0.0002

0.829

Marginal means

0.829

0.829

0.830

0.830

Original data AUC:

0.8313

Â