Table 12 Extended metrics of the proposed ArtFusionNet model, and the comparison models.

From: Enhancing artistic style classification through a novel ArtFusionNet framework

Model

AUC-ROC

Accuracy (%)

Per-Class Recall

Cohen’s Kappa

F1-Score

Validation Loss

Transformer-only Model

0.82

79.5

Style 1: 0.77

Style 2: 0.74

Style 3: 0.71

0.75

0.7823

1.1254

CLIP-based Framework

0.96

95.4

Style 1: 0.90

Style 2: 0.88

Style 3: 0.86

0.93

0.9850

0.1875

Swin Transformer

0.95

92.3

Style 1: 0.87

Style 2: 0.85

Style 3: 0.83

0.92

0.9801

0.2150

CNN-only Model

0.85

81.7

Style 1: 0.80

Style 2: 0.78

Style 3: 0.75

0.80

0.8139

1.0426

DeiT

0.97

96.3

Style 1: 0.91

Style 2: 0.87

Style 3: 0.85

0.94

0.9875

0.1601

Proposed model

0.98

99.00

Style 1: 0.92

Style 2: 0.89

Style 3: 0.87

0.95

0.9906

0.1227