Table 7 Comparative analysis of classification results on Chinese medicinal blossom, Chinese medicinal leaf, and fruit datasets.

From: Visual feature-based multi-scale hybrid attention network for fine-grained Hawthorn varieties identification

Methods

Medicinal blossom

Medicinal leaf

Fruit dataset

Top-1 ACC (%)

AUC (%)

Top-1 ACC (%)

AUC (%)

Top-1 ACC (%)

AUC (%)

VGG

84.47

94.0

83.96

94.0

67.189

80.0

ResNet

89.87

95.5

88.27

97.0

91.864

95.0

MobileNets

96.78

99.0

98.4

99.9

78.25

85.0

DenseNet

93.85

96.5

97.54

99.9

94.80

98.0

EffcientNet

97.02

99.0

99.2

100

92.74

96.0

ViT

90.75

95.5

93.72

96.5

78.93

85.0

CoAtNet

93.38

96.0

97.38

99.9

90.86

95.0

FocalNet

91.75

95.0

94.35

98.0

88.95

95.0

Swin Transformer

95.58

98.0

97.58

99.9

94.85

98.0

CMT

93.86

96.0

96.38

99.0

93.74

96.0

CvT

93.54

96.0

96.36

99.0

92.85

96.0

PVT

90.95

95.5

94.77

98.0

91.95

95.5

MaxViT

92.35

96.0

96.7

99.0

92.63

96.0

EfficientViT

96.46

99.0

99.31

100

95.05

99.0

SwinFG

96.73

99.0

97.54

99.9

96.52

99.0

Ours

97.34

100

99.73

100

97.87

100