Table 2 Summary of recent studies on battery SoH Estimation using advanced deep learning models.

From: Cycle based state of health estimation of lithium ion cells using deep learning architectures

Study

Method

Dataset

Performance

5

MLP-like memory model

NASA cells

MAE = 0.0075

60

Neural networks for SoH

Custom dataset

RMSE = 0.0110

14

MLP for SOC/SoH

Hardware-accelerated

MAE = 0.0082

10

BERT + TimeGAN

NASA B0018

R² = 0.995

13

FPCA-SETCN framework

NASA B0005

RMSE = 0.0094

76

2D-CNN + Self-Attention

LFP, NMC, NCA datasets

RMSE = 0.0109 (LFP), 0.0026 (NMC)

91

LC-GDAT (Lossy Counting + Gated Dual-Attention Transformer)

NASA, Real-world EV

MAE = 0.0046 (Lab), 0.0223 (EV)

85

Vehicle-Cloud Collaborative Hybrid Model

Real-world BEV data

MAE < 0.025

61

Hierarchical Feature Extraction + ML

Real-world EV data (300 EVs)

RMSE = 0.0105

65

SSA-LSTM + Deep SHAP

NASA, CALCE, PolyU

RMSE < 0.05, MAE < 0.05

92

Two-Stage Physics-Informed Neural Network (TSPINN)

NCA, NCM datasets

MAE = 0.00675