Table 3 Performance comparison under different data partitioning strategies.

From: Cycle based state of health estimation of lithium ion cells using deep learning architectures

Model

Split type

RMSE

MAE

R²

MLP

Chronological (80:20)

0.0069

0.0049

0.9955

Block-wise (60:20:20)

0.0072

0.0051

0.9951

Rolling-window CV

0.0074

0.0052

0.9949

TCN

Chronological (80:20)

0.0071

0.0051

0.9951

Block-wise (60:20:20)

0.0073

0.0052

0.9948

Rolling-window CV

0.0075

0.0053

0.9946

LSTM

Chronological (80:20)

0.0076

0.0055

0.9944

Block-wise (60:20:20)

0.0079

0.0057

0.9941

Rolling-window CV

0.0080

0.0058

0.9939

GRU

Chronological (80:20)

0.0160

0.0111

0.9754

Block-wise (60:20:20)

0.0163

0.0114

0.9749

Rolling-window CV

0.0166

0.0116

0.9745