Table 2 The proposed NN architecture for elementwise classification of input MII data.
From: Segmentation of gastroesophageal reflux events using a semi-U-Net architecture with 1D/2D CNNs
Layer | Layer type | #Channels | Unit type | Kernel size | Stride | Padding | Output |
|---|---|---|---|---|---|---|---|
Encoder | |||||||
Input* | 1 | (1, 6000, 6) | |||||
C1** | Conv 2-d | 8 | Relu | (211, 6) | (105, 0) | (8, 6000) | |
P | Pooling | Max | (2, 1) | (8, 3000) | |||
C2 | Conv 1-d | 16 | Relu | 21 | 10 | (16, 3000) | |
P | Pooling | Max | 2 | (16,1500) | |||
Decoder | |||||||
D1 | Transpose Conv 1-d | 8 | Relu | 2 | 2 | (8, 3000) | |
D2 | Transpose Conv 1-d | 1 | 2 | 2 | (1, 6000) | ||
Output | Softmax | Sigmoid | (1, 6000) |