Table 1 State-of-the-art ML models employed for wastewater parameters.

From: Automating wastewater characteristic parameter quantitation using neural architecture search in AutoML systems on spectral reflectance data

Method type

Dataset/context

Model

Parameter (s)

MAE

RMSE

R2

Limitations/notes

Reference

Support vector machines

Real wastewater treatment plant (AMBEV WWTP)

SVM

COD

29.94

30.86

− 11.97

Auto optimization of ML hyperparameters

21

VFCW

SVR

NH4-N

 

1.35

0.89

XAI approaches

10

TN

 

3.64

0.90

TP

 

0.08

0.87

Real-time South African municipal WWTP

SVR

Conductivity (Con)

8.35

50.47

XAI approaches for interpretation

20

COD

21.04

24.86

TSS

12.16

16.22

Neural networks (ANN, LSTM, BiLSTM, DNN)

Real-time South African municipal WWTP

LSTM

Conductivity (Con)

2.28

50.21

XAI approaches for interpretation

20

BiLSTM

COD

1.54

24.89

Umeå WWTP

DNN

Phosphate in effluent (PO4e)

0.872

Incorporating ML interpretation frameworks

23

Lab-scale two-staged A/O WWTP

LSTM

Influent NH4-N

0.101

Auto optimization of ML hyperparameters

24

The spectral reflectance dataset

ANN (multiple targets)

Influent BOD

2.415

0.973

Auto optimization of NN hyperparameters

14

Tree-based models (RF, CatBoost)

Real wastewater treatment plant (AMBEV WWTP)

RF

COD

30.03

30.95

− 3.30

Auto optimization of ML hyperparameters

21

Moscoe Region, Russia WWTP

CatBoostRegressor

BOD (Effluent)

0.670

0.962

0.78

 

22

COD (Effluent)

0.854

1.211

0.85

Ammonium (Effluent)

0.111

0.145

0.79

Phosphorus (Effluent)

0.036

0.054

0.81

Nitrate (Effluent)

0.484

0.765

0.82

Nitrite (Effluent)

0.003

0.006

0.88

 

Umeå WWTP

RF

PO4e

0.886

Incorporating ML model interpretation systems to enhance the framework and improve the reliability of its results.

23

TSSe

0.920

Regression models (MLR, rPCA-MARS)

Lab-scale two-staged A/O WWTP

MLR

Influent NH4-N

0.203

 

24

The spectral reflectance dataset

Linear rPCA-MARS

BOD

9.879 (MSE)

0.959

XAI approaches for interpretation

25

COD

213.072 (MSE)

0.967

NH3-N

3.032 (MSE)

0.936

Cubic rPCA-MARS

BOD

12.508 (MSE)

0.939

COD

284.445 (MSE)

0.945

NH3-N

3.113 (MSE)

0.934

  1. Existing research lacks explainability (XAI), AutoML optimization, and model generalization across different WWTPs. To overcome this, the current work proposed the RegNN -NAS, which optimizes the neural network for regression task using various search algorithm of NAS.