Table 1 State-of-the-art ML models employed for wastewater parameters.
Method type | Dataset/context | Model | Parameter (s) | MAE | RMSE | R2 | Limitations/notes | Reference |
|---|---|---|---|---|---|---|---|---|
Support vector machines | Real wastewater treatment plant (AMBEV WWTP) | SVM | COD | 29.94 | 30.86 | − 11.97 | Auto optimization of ML hyperparameters | |
VFCW | SVR | NH4-N | 1.35 | 0.89 | XAI approaches | |||
TN | 3.64 | 0.90 | ||||||
TP | 0.08 | 0.87 | ||||||
Real-time South African municipal WWTP | SVR | Conductivity (Con) | 8.35 | 50.47 | – | XAI approaches for interpretation | ||
COD | 21.04 | 24.86 | – | |||||
TSS | 12.16 | 16.22 | – | |||||
Neural networks (ANN, LSTM, BiLSTM, DNN) | Real-time South African municipal WWTP | LSTM | Conductivity (Con) | 2.28 | 50.21 | – | XAI approaches for interpretation | |
BiLSTM | COD | 1.54 | 24.89 | – | ||||
Umeå WWTP | DNN | Phosphate in effluent (PO4e) | – | – | 0.872 | Incorporating ML interpretation frameworks | ||
Lab-scale two-staged A/O WWTP | LSTM | Influent NH4-N | – | 0.101 | – | Auto optimization of ML hyperparameters | ||
The spectral reflectance dataset | ANN (multiple targets) | Influent BOD | 2.415 | – | 0.973 | Auto optimization of NN hyperparameters | ||
Tree-based models (RF, CatBoost) | Real wastewater treatment plant (AMBEV WWTP) | RF | COD | 30.03 | 30.95 | − 3.30 | Auto optimization of ML hyperparameters | |
Moscoe Region, Russia WWTP | CatBoostRegressor | BOD (Effluent) | 0.670 | 0.962 | 0.78 | |||
COD (Effluent) | 0.854 | 1.211 | 0.85 | |||||
Ammonium (Effluent) | 0.111 | 0.145 | 0.79 | |||||
Phosphorus (Effluent) | 0.036 | 0.054 | 0.81 | |||||
Nitrate (Effluent) | 0.484 | 0.765 | 0.82 | |||||
Nitrite (Effluent) | 0.003 | 0.006 | 0.88 | |||||
Umeå WWTP | RF | PO4e | – | – | 0.886 | Incorporating ML model interpretation systems to enhance the framework and improve the reliability of its results. | ||
TSSe | – | – | 0.920 | |||||
Regression models (MLR, rPCA-MARS) | Lab-scale two-staged A/O WWTP | MLR | Influent NH4-N | – | 0.203 | – | ||
The spectral reflectance dataset | Linear rPCA-MARS | BOD | 9.879 (MSE) | – | 0.959 | XAI approaches for interpretation | ||
COD | 213.072 (MSE) | – | 0.967 | |||||
NH3-N | 3.032 (MSE) | – | 0.936 | |||||
Cubic rPCA-MARS | BOD | 12.508 (MSE) | – | 0.939 | ||||
COD | 284.445 (MSE) | – | 0.945 | |||||
NH3-N | 3.113 (MSE) | – | 0.934 |