Table 3 Indicator validity.

From: The chain mediating role of critical thinking and AI self-efficacy in GenAI usage competence and engineering students’ creativity

Construct/Item

Indicator weight

Factor loadings/Cross-loadings

AISE

CT

ESC

GUC

Artificial intelligence self-efficacy (AISE)

 AISE1

0.139

0.872

0.789

0.670

0.576

 AISE2

0.119

0.807

0.691

0.544

0.549

 AISE3

0.139

0.909

0.787

0.660

0.594

 AISE4

0.131

0.900

0.733

0.618

0.606

 AISE5

0.119

0.855

0.652

0.580

0.557

 AISE6

0.121

0.882

0.663

0.571

0.600

 AISE7

0.123

0.886

0.674

0.582

0.596

 AISE8

0.128

0.850

0.668

0.664

0.556

 AISE9

0.132

0.854

0.707

0.676

0.546

Critical thinking (CT)

 CT1

0.197

0.707

0.877

0.608

0.590

 CT2

0.213

0.760

0.928

0.682

0.619

 CT3

0.205

0.736

0.925

0.689

0.552

 CT4

0.212

0.766

0.908

0.678

0.610

 CT5

0.202

0.707

0.862

0.698

0.544

 CT6

0.129

0.462

0.570

0.455

0.327

Engineering students’ creativity (ESC)

 ESC1

0.164

0.702

0.702

0.841

0.527

 ESC2

0.149

0.604

0.652

0.907

0.514

 ESC3

0.160

0.655

0.698

0.925

0.535

 ESC4

0.153

0.640

0.660

0.910

0.514

 ESC5

0.157

0.636

0.683

0.920

0.528

 ESC6

0.156

0.639

0.683

0.938

0.507

 ESC7

0.160

0.667

0.691

0.928

0.525

Generative artificial intelligence usage competence (GUC)

 GUC1

0.159

0.463

0.450

0.389

0.644

 GUC2

0.181

0.501

0.517

0.462

0.830

 GUC3

0.154

0.425

0.449

0.383

0.780

 GUC4

0.143

0.398

0.408

0.364

0.768

 GUC5

0.192

0.524

0.527

0.530

0.803

 GUC6

0.208

0.636

0.566

0.492

0.843

 GUC7

0.218

0.656

0.602

0.520

0.865

  1. Factor loadings are indicated by values in bold and italics; CA, Cronbach’s alpha; CR, Composite Reliability; AVE, Average Variance Extracted.