Table 3 Results of applying optimal departure procedure on two scenarios.
| Â | Initial setup | Procedure application | Updated delivery times | Conclusion |
|---|---|---|---|---|
Scenario 1 | o Delivery times: 18, 24, 27, 41, 47 o Late items L = {8} o Early items E = {1,5} o Timely items G = {4,7} \(t=e=1\) \(\rho =\left|E\left|-\frac{t}{e}\right|L\right|=1\) | o Step 5 is initiated Because \(\rho >0\) \(A=\left\{\text{1,3}\right\}\) \(B=\left\{\text{1,2}\right\}\) \(\Delta {e}_{1}=\text{min}A=1\) \(\Delta {e}_{2}=\text{max}A=3\) \(\Delta {s}_{1}=\text{min}B=1\) \(\Delta {x}_{1}=\text{min}\left(\Delta {e}_{1},\Delta {s}_{1}\right)=1\) o H = {1} \(\Delta {d}_{\nu }^{\mu in}=\text{min}H=1\) o Updated \({d}_{v}={d}_{v}+\Delta {d}_{\nu }^{\mu in}\) = 11 | o New delivery times: 19, 25, 28, 42, 48 o Late items L = {8} o Early items E = {5} o Timely items G = {1,4,7} \(\rho =0\) | o Procedure terminates with \({d}_{v}^{*}=11\) |
Scenario 2 | o Delivery times: 18, 24, 34, 43 o Late items L = {3,8} o Early items E = {1} o Timely items G = {4,7} \(t=e=1\) \(\rho =\left|E\left|-\frac{t}{e}\right|L\right|=-1\) |  |  | o Since \(\rho <0\),\({d}_{v}^{*}=10\) |