Table 2 Comparison results on the Flare7K++ real test dataset. Best results are highlighted in Bold, second-best in Italic. * denotes models with reduced parameters due to limited GPU memory. indicates methods without released code, for which metrics are reported from the original paper and may be incomplete. Note: The average inference time per image for SMFR-Net and SMFR-Net-L is 0.0825 s and 0.0412 s, respectively, measured on an NVIDIA TITAN RTX (24 GB) GPU.

From: SMFR-Net: simple multi-domain flare removal network

Dataset

Flare7K++ real test dataset

Metrics

PSNR\(\uparrow\)

SSIM\(\uparrow\)

LPIPS\(\downarrow\)

G-PSNR\(\uparrow\)

S-PSNR\(\uparrow\)

Params (M)

MACs (G)

Input

22.561

0.856

0.0777

19.555

13.104

-

-

Previous Synthesis Pipelines

FF-Former18

27.350

0.901

0.0440

-

-

-

-

Sharma33

20.492

0.826

0.1115

17.790

12.685

22.365

285.12

Wu10

24.613

0.871

0.0598

21.772

16.728

34.526

261.901

Flare7K1

26.978

0.890

0.0466

23.507

21.563

20.429

159.643

Flare7K++

Zhou et al.34

25.184

0.872

0.0548

22.112

20.543

20.628

327.347

Restormer*17

27.597

0.897

0.0447

23.828

22.452

2.981

57.975

MPRNet*35

27.036

0.893

0.0481

23.490

22.267

3.642

567.187

U-net11

27.189

0.894

0.0452

23.527

22.647

34.527

261.953

NAFNet26

27.042

0.888

0.0556

24.098

22.459

67.788

252.314

Uformer16

27.633

0.894

0.0428

23.949

22.603

20.601

164.361

HINet36

27.548

0.892

0.0464

24.081

22.907

88.674

685.127

Kotp and Torki19

27.662

0.897

0.0422

23.987

22.847

129.306

271.419

SPDDNet37

28.033

0.903

0.0420

24.537

23.614

25.620

105.010

LPFSformer38

28.238

0.905

0.0422

24.793

23.876

13.733

525.442

Flare7K++ FlareReal600

SMFR-Net-L (ours)

28.225

0.907

0.0403

24.760

23.832

2.152

31.228

SMFR-Net (ours)

28.352

0.907

0.0384

24.841

23.941

7.981

103.888