Table 3 Model training parameters and hyperparameter values.

From: SCBM-Net: a multimodal feature fusion-based dual-channel method for bearing fault diagnosis

Category

Parameter

Value/range

Optimizer

Adam

lr = 0.0001, weight decay = 1e − 5

Learning rate schedule

StepLR

Step size = 10, gamma = 0.1

Batch size

32

Epochs

50

Early stopping

Validation accuracy

Patience = 5

Loss function

CrossEntropyLoss

Dropout

BiGRU layers

0.2

Random seed

42