Table 5 Performance comparison at different parameters \(\alpha\)and \(\tau\).

From: SCBM-Net: a multimodal feature fusion-based dual-channel method for bearing fault diagnosis

α

τ

RE

OI

Accuracy (%)

Precision

Recall

F1-score

1000

\({10^{{\text{-6}}}}\)

0.185133

0.339019

94.00%

0.9442

0.9400

0.9347

1000

\({10^{{\text{-7}}}}\)

0.184928

0.339040

94.33%

0.9508

0.9433

0.9409

1000

\({10^{{\text{-8}}}}\)

0.184867

0.339051

95.33%

0.9544

0.9533

0.9516

2000

\({10^{{\text{-6}}}}\)

0.261097

0.282827

96.83%

0.9695

0.9683

0.9677

2000

\({10^{{\text{-7}}}}\)

0.260675

0.282948

97.50%

0.9726

0.9750

0.9732

2000

\({10^{{\text{-8}}}}\)

0.260630

0.282974

96.50%

0.9651

0.9650

0.9643

5000

\({10^{{\text{-6}}}}\)

0.393508

0.090837

97.00%

0.9698

0.9700

0.9697

5000

\({10^{{\text{-7}}}}\)

0.393401

0.090806

96.50%

0.9660

0.9650

0.9638

5000

\({10^{{\text{-8}}}}\)

0.393400

0.090808

96.67%

0.9672

0.9667

0.9662