Table 3 Performance comparison of different object detection algorithms on M3FD and LLVIP datasets.

From: Super Mamba feature enhancement framework for small object detection

Method

M3FD

LLVIP

mAP@0.5

mAP@0.75

mAP@0.95

Pare(M)

mAP@0.5

mAP@0.75

mAP@0.95

Pare(M)

Super-yolo-star [45]

0.8722

0.8601

0.8437

5.1

0.8789

0.8063

0.7746

5.1

Super-yolo-Dattention [46]

0.8653

0.8507

0.8254

5.3

0.8745

0.8025

0.7507

5.3

Super-yolo-RFAConv [41]

0.8751

0.8520

0.8373

5.6

0.8628

0.7990

0.7206

5.6

Yolov5 [47]

0.7983

0.7654

0.7434

17.7

0.8432

0.8103

0.7143

17.7

Yolov11 [49]

0.8940

0.8736

0.8501

18.3

0.9145

0.8405

0.8038

18.3

Yolov8 [48]

0.9017

0.8832

0.8478

21.5

0.9222

0.8316

0.8043

21.5

Ours

0.9322

0.9034

0.8865

17.6

0.9413

0.8775

0.8514

17.6