Table 4 Results comparison of federated learning (FL) methods under Sybil and collision attacks.

From: A federated incremental blockchain framework with privacy preserving XAI optimization for securing healthcare data

Dataset

Methods

Accuracy (%)

Loss (%)

Sybil

Collision

Sybil

Collision

Heart disease

FedAvg

83.11

82.54

16.89

17.46

FL-MPC

85.24

83.46

14.76

16.54

FL-RAEC

87.88

85.69

12.12

14.31

PEFL

90.25

87.38

9.75

12.62

PPBEFL

93.39

89.57

6.61

10.43

PPFBXAIO

94.93

91.28

5.07

8.72

PPFILB-OXAI

96.46

93.67

3.54

6.33

Breast cancer wisconsin

FedAvg

82.62

81.41

17.38

18.59

FL-MPC

84.47

83.66

15.53

16.34

FL-RAEC

86.78

85.83

13.22

14.17

PEFL

89.09

87.56

10.91

12.44

PPBEFL

92.94

90.18

7.06

9.82

PPFBXAIO

94.17

91.61

5.83

8.39

PPFILB-OXAI

96.36

93.75

3.64

6.25