Table 1 The Eq. (9) could yield numerous solutions for the function \(F\) based on the selected values for \({m}_{2}, {m}_{1}\) and \({m}_{0}\)62,63.

From: Periodic structures of solitons and shock wave solutions in the fractional nonlinear Shynaray-IIA equation via a generalized analytical method

 

\({m}_{2}\)

\({m}_{1}\)

\({m}_{0}\)

F

1

\({r}^{2}\)

\(-(1+{r}^{2})\)

1

\(sn, cd\)

2

\({r}^{2}\)

\(2{r}^{2}-1\)

\(1-{r}^{2}\)

\(cn\)

3

 − 1

\(2-{r}^{2}\)

\({r}^{2}-1\)

\(dn\)

4

1

\(-(1+{r}^{2})\)

\({r}^{2}\)

\(ns, dc\)

5

\(1-{r}^{2}\)

\(2{r}^{2}-1\)

\(-1\)

\(nd\)

6

\({r}^{2}-1\)

\(2-{r}^{2}\)

\(-1\)

\(nd\)

7

\(1-{r}^{2}\)

\(2-{r}^{2}\)

1

\(sc\)

8

\(-{r}^{2}(1-{r}^{2})\)

\(2{r}^{2}-1\)

1

\(sd\)

9

1

\(2-{r}^{2}\)

\(1-{r}^{2}\)

\(cs\)

10

1

\(2{r}^{2}-1\)

\({r}^{2}(1-{r}^{2})\)

\(ds\)

11

\(\frac{-1}{4}\)

\(\frac{{r}^{2}+1}{2}\)

\(\frac{-{(1-{r}^{2})}^{2}}{4}\)

\(rcn\mp dn\)

12

\(\frac{1}{4}\)

\(\frac{-2{r}^{2}+1}{2}\)

\(\frac{1}{4}\)

\(ns\mp cs\)

13

\(\frac{1-{r}^{2}}{4}\)

\(\frac{{r}^{2}+1}{2}\)

\(\frac{1-{r}^{2}}{4}\)

\(nc\mp sc\)

14

\(\frac{1}{4}\)

\(\frac{{r}^{2}-2}{2}\)

\(\frac{{r}^{4}}{4}\)

\(ns\mp ds\)

15

\(\frac{{r}^{2}}{4}\)

\(\frac{{r}^{2}-2}{2}\)

\(\frac{{r}^{2}}{4}\)

\(sn\mp icn, \frac{sn}{\sqrt{1-{r}^{2}sn\mp cn}}\)

16

\(\frac{1}{4}\)

\(\frac{1-2{r}^{2}}{2}\)

\(\frac{1}{4}\)

\(rcn\mp idn, \frac{sn}{1\mp cn}\)

17

\(\frac{{r}^{2}}{4}\)

\(\frac{{r}^{2}-2}{2}\)

\(\frac{1}{4}\)

\(\frac{sn}{1\mp dn}\)

18

\(\frac{{r}^{2}-1}{4}\)

\(\frac{{r}^{2}+1}{2}\)

\(\frac{{r}^{2}-1}{4}\)

\(\frac{dn}{1\mp rsn}\)

19

\(\frac{1-{r}^{2}}{4}\)

\(\frac{{r}^{2}+1}{2}\)

\(\frac{-{r}^{2}+1}{4}\)

\(\frac{cn}{1\mp sn}\)

20

\(\frac{{(1-{r}^{2})}^{2}}{4}\)

\(\frac{{r}^{2}+1}{2}\)

\(\frac{1}{4}\)

\(\frac{sn}{dn\mp cn}\)

21

\(\frac{{r}^{4}}{4}\)

\(\frac{{r}^{2}-2}{2}\)

\(\frac{1}{4}\)

\(\frac{cn}{\sqrt{1-{r}^{2}\mp dn}}\)