Table 2 Layer wise description of the CNN trained.

From: IoT integrated CNN framework for automated detection and quantification of rice and potato crop diseases

S. no.

Input image

227 × 227 × 3 images with ‘zero center’ normalization

1.

conv1 layer

96 11 × 11 × 3 convolutions with stride [4 4] and padding [0 0 0 0]

2.

Relu1 unit

ReLU unit

3.

Norm1layer

cross channel normalization with 5 channels per element

4.

Pool1 layer

cross channel normalization with 5 channels per element

5.

Conv2 layer

256 5 × 5 × 48 convolutions with stride [1 1] and padding [2 2 2 2]

6.

Relu2 unit

ReLU unit

7.

Norm2 layer

Cross Channel Normalization with 5 channels per element

8.

Pool2 layer

3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]

9.

Conv3 layer

384 3 × 3 × 256 convolutions with stride [1 1] and padding [1 1 1 1]

10.

Relu3unit

ReLU unit

11.

Conv4 layer

384 3 × 3 × 192 convolutions with stride [1 1] and padding [1 1 1 1]

12.

Relu4 unit

ReLU unit

13.

Conv5 layer

256 3 × 3 × 192 convolutions with stride [1 1] and padding [1 1 1 1]

14.

Relu5 unit

ReLU

15.

Pool5 layer

3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]

16.

Fc6 layer

4096 fully connected layer

17.

Relu6 unit

ReLU unit

18.

Fc7 layer

4096 fully connected layer

19.

Relu7 unit

ReLU unit

20.

Special_2

64 fully connected layer

21.

Relu8

ReLU unit

22.

Fc8_2

3 fully connected layer

23.

Softmax

Softmax

24.

Classification Output

Cross entropy ex