Table 1 Evaluation matrix.
Evaluation matrix | Equation | Description |
|---|---|---|
Mean square error (MSE) | \(MSE = \left( {\frac{1}{n}} \right)\sum {\left( {y_{i} - \bar{y}} \right)} ^{2}\) (8) | Where n is the number of data points, yi is the ith actual value, ȳ is the mean of the actual values |
Root mean square error (RMSE) | \(RMSE=\:\sqrt{\left(\:\frac{1}{n}\:\right)\:\sum\:({y}_{i}\:-\:\stackrel{-}{y})2}\) (9) | Where n is the number of data points, yi is the ith actual value, ȳ is the mean of the actual values |
Mean absolute error (MAE) | \(MAE = \left( {~\frac{1}{n}~} \right)~\sum (y_{i} - \bar{y})\) (10) | Where n is the number of data points, yi is the ith actual value, ȳ is the mean of the actual values |
Coefficient of determination (R^2) | \(R^{2} = 1 - \left( {\frac{{\sum \left( {y_{i} - \bar{y}~} \right)^{2} }}{{\sum \left( {y_{i} - \hat{y}~} \right)^{2} }}} \right)\) (11) | Where yi is the ith actual value, ȳ is the mean of the actual values, ŷ is the predicted value. |