Table 5 Simulation hyperparameters of existing methods.

From: A gated temporal attention based intra prediction framework for robust deepfake video detection

S.No

Method

Parameter

Type or Value

1

XceptionNet

Input Size

299 × 299 × 3

2

Backbone

Depthwise Separable ConvNet

3

Learning Rate

0.0001

4

Batch Size

32

5

Epochs for Training

100

6

Loss Function

Binary Crossentropy

7

Two-Stream CNN

Input Size

224 × 224 × 3 per stream

8

Backbone

VGG-16 for both streams

9

Loss Function

Categorical Crossentropy

10

Batch Size

32

11

Epochs for Training

100

12

Learning Rate

0.0001

13

EfficientNet-B0

Input Size

224 × 224 × 3

14

Input Size

128 × 128 × 3

15

Backbone

MBConv with squeeze-excite

16

Dropout Rate

0.2

17

Loss Function

Sparse Categorical Loss

18

Learning Rate

0.0001

19

Batch Size

32

20

Epochs for Training

100

21

Capsule Network

Capsule Routing Iterations

3

22

Optimizer for All Models

Adam

23

Initial Learning Rate

0.001

24

Batch Size (All Models)

32

25

Epochs for Training

100

26

Dropout Rate

0.3

27

Loss Function

Margin Loss