Table 3 Comparison of various proposed VQEDTL models with ISONET.
Model hyper parameter | ISONET | VQResNet50_10 | VQInceptionResnetv2_10 | VQMobileNetv2_10 | VQDenseNet201_10 |
|---|---|---|---|---|---|
Classical layer | 17 | 6 | 6 | 6 | 6 |
Quantum layer | – | 4 | 4 | 4 | 4 |
Qubit | – | 4 | 4 | 4 | 4 |
Train parameter | 3,278,371 | 18,337 | 16,289 | 15,265 | 17,825 |
Training time | 40Â min | 74Â min | 130.5Â m | 46Â min | 123.5Â min |
Training loss | 0.5505 | 0.0546 | 0.2793 | 0.0987 | 0.0813 |
Validation loss | 0.5358 | 0.0437 | 0.2333 | 0.1548 | 0.0892 |
Test loss | 0.5138 | 0.0247 | 0.2573 | 0.1413 | 0.0754 |
Train accuracy | 0.9404 | 0.9837 | 0.8856 | 0.9710 | 0.9763 |
Valid accuracy | 0.9468 | 0.9908 | 0.8890 | 0.9532 | 0.9752 |
Test accuracy | 0.9460 | 0.9926 | 0.8827 | 0.9609 | 0.9814 |
Precision | 0.94 | 0.99 | 0.87 | 0.96 | 0.98 |
Recall | 0.93 | 0.99 | 0.88 | 0.96 | 0.98 |
F1score | 0.93 | 0.99 | 0.87 | 0.96 | 0.98 |