Table 5 Comparison of VQEDTL Variants with baseline DLMs.

From: Variational quantum enhanced deep transfer learning for small underwater aqua species image classification

Metric

ISONet

Classical ResNet50

VQ

ResNet50_10

Classical MobileNetV2

VQ MobileNetV2_10

Classical Inception

ResNetV2

VQ

Inception ResNetV2_10

Classical DenseNet201

VQ

DenseNet201_10

Total params

3,278,371

23,859,333

23,606,433

2,431,301

2,273,633

54,542,821

54,353,409

18,577,221

18,340,193

Training params

3,278,371

23,805,829

18,337

2,396,805

15,265

54,481,893

16,289

18,347,781

17,825

FLOPs

65, 56,742

47,718,66

36,674

48,62,602

30,530

10,89,63,786

32,578

3,66,95,562

35,650

Inference time (s)

2.09

1.19

0.295

0.95

0.259

3.499

0.655

3.58

0.589

Validation Acc(%)

94.7

95.6

99.08

85.69

95.32

84.77

88.9

92.48

97.52

  1. Significant values are in bold.