Table 3 Data Extraction for Further Analysis and Calculations.

From: Uncovering the Influence of Operational Factors on Manufacturing Efficiency with Real Time Data

date

shift_in_minutes (Min)

Planned_downtime_tea_lunch_dinner (Min)

num_rollers

num_good_rollers

num_rollers_waste

ideal_cycle_time (Min)

Customer_demand

16-Aug-23

59.833333

15

5

5

0

24

10

21-Aug-23

242.26667

60

3

3

0

24

8

22-Aug-23

406.53333

120

8

8

0

24

13

25-Aug-23

688.61667

120

13

13

0

24

18

26-Aug-23

418.23333

120

12

11

1

24

17

27-Aug-23

853.5

120

26

26

0

24

31

28-Aug-23

691.01667

120

9

9

0

24

14

5-Sep-23

135.16667

15

5

1

4

24

10

13-Sep-23

12.166667

15

2

2

0

24

7

15-Sep-23

358.98333

60

8

8

0

24

13

16-Sep-23

621.61667

120

35

35

0

24

40

17-Sep-23

449.95

120

37

36

1

24

42

18-Sep-23

705.95

120

43

41

2

24

48

20-Sep-23

787.96667

120

34

33

1

24

39

22-Sep-23

919.3

120

33

32

1

24

38

23-Sep-23

561.58333

120

12

12

0

24

17

27-Sep-23

544.46667

120

22

20

2

24

27

28-Sep-23

247.08333

60

7

7

0

24

12

29-Sep-23

227.86667

60

6

5

1

24

11

30-Sep-23

185.06667

60

4

4

0

24

9