Table 6 Effectiveness analysis of the adaptive structural community extraction Module.
From: Simple yet effective heuristic community detection with graph convolution network
| Â | Â | Min DBI | Max Q | Max NMI | Max ACC | Max F1 | Max ARI | Max FMI | Max SC |
|---|---|---|---|---|---|---|---|---|---|
Cora | With global structure | 0.458282 | 0.765320 | 0.561161 | 0.673929 | 0.663000 | 0.472555 | 0.562167 | 0.858014 |
Without global structure | 0.676832 | 0.681079 | 0.528015 | 0.673929 | 0.657000 | 0.451359 | 0.566008 | 0.708492 | |
Acm | With global structure | 0.684481 | 0.745318 | 0.620495 | 0.844298 | 0.670900 | 0.692292 | 0.788906 | 0.798375 |
Without global structure | 2.697249 | 0.470766 | 0.460258 | 0.639339 | 0.740500 | 0.428861 | 0.678737 | 0.269921 | |
Amap | With global structure | 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579 | 0.607000 | 0.899968 |
Without global structure | 0.242789 | 0.461736 | 0.347316 | 0.452810 | 0.451600 | 0.233878 | 0.453156 | 0.834500 | |
Uat | With global structure | 0.774019 | 0.280535 | 0.248141 | 0.547059 | 0.575400 | 0.243589 | 0.476756 | 0.648977 |
Without global structure | 0.723423 | 0.241941 | 0.219666 | 0.512605 | 0.500600 | 0.196388 | 0.499371 | 0.655903 |