Table 9 Experimental results with and without \(L_{MAGI}\) loss.
From: Simple yet effective heuristic community detection with graph convolution network
| Â | Â | Min DBI | Max Q | Max NMI | Max ACC | Max F1 | Max ARI |
|---|---|---|---|---|---|---|---|
Cora | With contrastive loss | 0.501831 | 0.746360 | 0.544831 | 0.666913 | 0.638700 | 0.488040 |
Without contrastive loss | 0.458970 | 0.765320 | 0.561596 | 0.669129 | 0.663200 | 0.469243 | |
Acm | With contrastive loss | 0.916360 | 0.728609 | 0.516628 | 0.744463 | 0.553700 | 0.544837 |
Without contrastive loss | 0.684481 | 0.745318 | 0.620495 | 0.844300 | 0.670900 | 0.692292 | |
Amap | With contrastive loss | 0.457712 | 0.643710 | 0.608214 | 0.615294 | 0.623500 | 0.466393 |
Without contrastive loss | 0.377126 | 0.670459 | 0.646764 | 0.685882 | 0.684800 | 0.506579 | |
Uat | With contrastive loss | 0.206296 | 0.167113 | 0.227279 | 0.510924 | 0.491400 | 0.206899 |
Without contrastive loss | 0.807088 | 0.280636 | 0.249595 | 0.546218 | 0.578200 | 0.242806 |