Table 1 Machine learning model performance comparison results.

From: Machine learning prediction model for medical environment comfort based on SHAP and LIME interpretability analysis

Model

Accuracy

Precision

Recall

F1-Score

ROC-AUC

CV Accuracy

Weighted Score

Logistic regression

0.78

0.80

0.85

0.82

0.82

0.79

0.81

Decision tree

0.74

0.76

0.80

0.78

0.76

0.75

0.76

Random forest

0.81

0.82

0.89

0.85

0.84

0.81

0.84

SVM

0.77

0.77

0.84

0.81

0.80

0.77

0.79

K-Nearest neighbors

0.72

0.74

0.82

0.78

0.74

0.73

0.76

Gradient boosting

0.80

0.81

0.88

0.84

0.82

0.79

0.82

AdaBoost

0.76

0.77

0.83

0.80

0.79

0.77

0.79

Extra trees

0.73

0.75

0.81

0.78

0.76

0.74

0.76

Naive bayes

0.81

0.83

0.89

0.86

0.85

0.82

0.84

XGBoost

0.85

0.86

0.92

0.89

0.89

0.85

0.88